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.. Abstract

The paper presents some recently obtained results on the nonline-

ar filtering problem for infinite dimensional processes. The optimal

filter is obtained as the unique solution of certain measure valued

equations. Robustness properties - both pathwise and statistical -

are given and a preliminary result shows consistency with the sto-

chastic calculus theory. Applications to random fields and models of

voltage potential in neurophysiology are briefly discussed.

1. Introduction

The finitely additive white noise approach to filtering, smoothing

and prediction developed in Kallianpur and Karandikar [3,4] is partic-

ularly useful when the stochastic processes involved take values in in-

finite dimensional spaces. Since there is no natural measure (such as

*: Lebesgue measure) in infinite dimensional spaces, the optimal filter

is given by a measure valued differential e ation in which the ob-

served process occurs as a parameter. The existence and uniqueness of

solution has been established in [3] for the filtering problem to which

we confine ourselves in this paper. However, the result in [3] is not

applicable to the most general observation model and, in particular,

does not cover linear filtering. We will first state a version of the

filtering result that is a siqnificant improvement over the theorems

obtained in [3) and then show how it can be applied to the case when

the system process is a Banach or Hilbert space valued Markov process,

" , """.." ,'2'i " -. ""-2 _[..,:0* . ,..:;'".';-' -'.".-- , . .: :.""--" " '.. -.:;:' - -'.--.-., ,,N. . "" . ;2:,, : ; S""-. '-.-.,.,..''.,,:-.<',..,



e.g., an Ornstein-Uhlenbeck process. Certain problems involving ran-

dom fields (e.g. horizontal or vertical filtering) can also be solved

using the white noise formulation. We conclude by discussing the ro-

bustness of the measure valued filter including a property which we

call statistical robustness (Theorem 3). our final result (Theorem 4)

*extends some of our consistency results to the measure valued case.

Corresponding results for prediction and smoothing problems will

appear in our forthcoming work [41.

For notation and definitions not given in this paper, the reader

is referred to [3].

2. Measure-valued Equations for the Optimal Filter

* "."-Let X = (X ) be a Markov process defined on a complete probability
t

space (-.,A,7) and taking values in a Polish space S. Let K be a sepa-

" rable Hilbert space with inner product ) and norm I.!!K and let

TKj '2,H := ([0,T],K) : ;: [O,T] -*K with IB I12 111, 1 2 d <

0

Let h [0,T] -S -K be a measurable function such that

T
< h (X 2 (1)
0 s

for every *

Denote by (HC,m) the finitely additive Gaussian white noise meas-

ire and by e, the identity map from H to H. Let -<( ) be the A/B(H)

.measurable, H-valued process (w) =h (X (w)), t -[OT]. Both 2 and e
t t t

can be defined in an obvious manner on (E,Ei) = (,A, )-(H,C,m). Then

the abstract filtering model

y= + e (2)

takes the more concrete form

Yt h t (Xt) + e t ,  0 t T. (3)

In (3) (y t) is the observed process and (e ) is K-valued white noise.

o4
.. P..



Although our results also include the case of finite dimcnsional K, as

mentioned earlier, we are concerned in this paper with applicatinns

where dimK =

Letting Qt be the orthogonal projection on H with range

Ht : H K jds =0} (0 - t -T), it can be shown that the condi-

tional expectation E [g(X t) IQty] exists in the finitely additive theo-

ry and is given by the Bayes formula

;'" E [g (Xt  !Qt (4)

A t t at (l,Q ty)

t twh re

. (g, Qty ) = f g((Xs(t )))Kd - 2 hs (Xs( ))1ds}V(cu). (5)
<2 0 0

It is assumed, of course, that g :S-+mR is such that g(X t ) is ;-inte-

_:rable.

The main problem is to determine, recursively, the conditional dis-

tribution Ft() of Xt given y , 0 ! s -t or, equivalently, the unnor-
t S

malized conditional distribution 7y(.), where
t

yI (B)
F t(B) ry and 7 (g, t y) Cdx)..tt (S) S

Let 'I .(SS(S) be the class of all finite Borel measures on S.

Before stating our result we need to impose the following conditions

• - on X: Let ID := D([0,, ),S) be the Skorokhod space of functions from

- [0,-) to S which are right continuous and have left limits and let

t , s 'u "t} where 0 -s et <- and (x) are the coordinate maps.

(A) (i) The paths of the process X belong to M;

(ii) The Markov process X admits a transition probability function
t

(iii) For all (s,x) [0,,) S, there exists a (countably additive)

-robability :-ieosure P on s,) such that for all k 1,s, x

,,_.;-.;, .,..,. -. ., ,-,,_ ,. ,,, ,, ,,. .... ~
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0 s-t I < <... <t k and Al,..., Ak B (S) we have (with to =s,
O= x) ,k

Ps xXti Ai, 1 fi k = f...fi 1A (yi)P(tilYil;tk dyi)"
SIX ti i_ k1'

The extended generator of Xt will be denoted by L and its domain by D.

-More precisely, L is the generator of := (t,X t ) with augmented state

-, space [0,-) -S and stationary transition probabilities. Let (V ) be
t

the two parameter semigroup of (Xt) and (Tt), the one parameter semi-

oroup of (Xt ) with extended generator L and domain V. See [3].
t

Theorem 1. Let the S-valued Markov process Xt satisfy Condition (A)

and

T
Er "h CXs ) ds < (6).- S

For each - H let c (x) : [0,T] 'S- fIR be defined by

52

cix) = (h (x), ) 2 ( (7).- :'. ss s K 2 ' hs(X l K .  7

Denote by V the semigroup corresponding to the transition pro-

babilities of X and also write N 7oX01 Then the following conclu-

. sions hold for all y H:

(a) y is the unique solution of the integral equation

t
t,.)' t <f(0, ),N0 > + f<(Lf +cYf) (s,) ,Y>ds, f . D (8)0 5 S

•b) - is the unique solution of the equation
t

0t
_Y. = <Vtg - + . (Vt(g) ( 'Yds (9)

for all g B(S) , the bounded, Borel measurable functions on S.

(c) FY is the unique solution to

t

*:" .. . . - .. . . . . -.. . ...-.- ...... .. , . . -.--. .. ..- . - . -. , , - .. .- . . -- . - . - . -..



% t
<f(t,'), F y >  <f(O,-),N 0 > + f<(Lf +cYf)(S,.),FY>dst 0 S

(10)
- f<cyFy><f, Fy>ds, f. V,

0 S s

(d) FY is the unique solution of the equation
t

.'' t tS 0 t
<g,F g,N + <c(vg),F >ds - FY>ds (11)

g" 0-0 s t - 0 s s t ' s

for all g IB(S)

The uniqueness property asserted above is to be understood to hold

in the class of K t } ILM satisfying the following conditions:

For A S(S), K0 (A) =EI A (X 0 ) and t -K t (A) is a bounded Borel
0-"-"t(12)

measurable function;

Kt is absolutely continuous with respect to IoX and

F dK t tt

((13)R, 0 t T,
t

for a suitable constant R <-.

3. Examples

The theorems of the preceding section can be applied to certain

problems of filtering of random fields. Suppose that X = (Xs),

0 <s ;T, 0 x -b is a two parameter, real-valued, sample continuous

process. We shall refer to x as the spatial parameter. The observa-

tion model is

tx
Y = 0f 0 s (X sv)dvds + WtX (14)i 00

where the following conditions are imposed:

(i) W = (W tx) is a standard, Yeh-Wiener process.

(ii) X and W are independent.

,_!!? ~ ~~ 0> o~ s X)x d xds <
The assumptions on X allow us to regard X as a sample continuous pro.-

t

A,



cess taking values in the Banach space B : C0 ([O,b],IR). So we have

S =B and X.EC([0,T];B). We shall make the further assumption that Xt

is a (B-valued) Markov process. Consider now the white noise model.

Take K =H, the (reproducing kernel) Hilbert space of real valued abso-

lutely continuous functions on [0,b] with square integrable derivatives.

Let h: [O,T] xB-*H be given by

x
h h) (x) :=j t v)dV, Tj E B.

t t v

.P" Then the white noise observation model is given by

Yt ht(Xt) + et, 0 -t -T, (15)

where et is H-valued Gaussian white noise. For more details and a

somewhat different treatment of this problem, see [7].

* The conversion of the filtering problem involving a two parameter

random field into a filtering problem for an infinite dimensional (in

this case B-valued) signal process is useful in cases when observations

can be assumed to be available for all values of the spatial variable

x. The latter situation occurs when Xt. represents the (random) volt-

age potential at time t and "site" x of a spatially extended neuron,

the neuron being modeled as a thin cylinder or segment [O,b] (see

[5,61). Another example in which neither parameter has the connotation

of time occurs in problems of physical geodesy [11.

An example of a B-valued Markov process Xt is the Malliavin Orn-

stein Uhlenbeck (O-U) process which is given by the unique solution of the

SDE dtt = Xtdt +dBtx, X B (X0  Gaussian) where B = (Bt) is a

Yeh-Cameron Wiener process. The generator L (the so-called Ornstein-

Uhlenbeck operator) is well known: For 0 -xI , .... x nb and for func-

tions f :B -IR of the form

f() = f((Xl),..., n(x n))
1 n

where C2 (IRn ) we have
b

V



i,j=l J fX.3

- AX i(X3x)-(n(xI ) .. , n(xn))
2 ~ (T (X n 

i=l 1

Other examples in which the infinite dimensional signal process Xt

does not arise from a multiparameter stochastic process also occurs in

the study of neuronal behavior when the geometrical shape of the neuron

s. 1i more complicated. Even in the simplest such models, Xt is an O-U

-' process (more generally, a non-Gaussian, diffusion process) whose sample

paths lie in C([O,T],K) where K is some infinite dimensional Hilbert

space. A natural filtering problem is given by the linear model

. t X t  + e t
t t

which follows from (3) by taking B =K and h (n) En.
t

4. Robustness of the Measure Valued Optimal Filter

We shall now state some typical results on the robustness properties

of the measure valued optimal filter. These are extensions of results

recently obtained by H.P. Hucke in his thesis [2]. Robustness is used

in two senses here: the first in the sense that has become convention-

al in the theory, viz., the continuous pathwise dependence of the opti-

mal filter on the observations; the second is robustness as commonly

used in statistics.

Write M := IE rT lh s (X) I ds <

Theorem 2. Let y,y' H and denote the total variation norm

Var : sup j' (A) 7Y'(A)

At S (S) t

Then

t- t HVar M Qty Qt y ' "exp Qty t

Theorem 3. Let (Xk ) (k =1,2 ... ) be signal processes satisfying ass :-

.
."



tion (A) of Theorem 1. Suppose further that the following conditions

are satisfied:

(a) h : [0,T] x S -K is continuous.

(b) The sequence of measures Ro (X k) - converges weakly (->) to

"oX 1 in (ID, B(D)

(c) oX -[x E ID : xt xt]) = 0 for each t.

Then for every y xH, 7k,y - Fy in M(S) (in the topology of weak con-
t t

vergence.)

S.% The statistical significance of the above result is clear. It says

that small changes in the distribution of the signal process cause only

small deviations in the optimal filter. Further implications of stat-

istical robustness in specific problems (such as the Kalman filter with

non-Gaussian initial distribution) will be discussed in a later work.

To what extent do the results of this paper imply analogous re-

sults for the stochastic calculus theory? Such consistency results

when signal and noise are finite dimensional have been presented in

[3]. For the infinite dimensional case, results at this level of

7enerality do not seem to have been obtained in the conventional theory.

Nevertheless, using the white noise model of this paper one might hope

to derive robust versions for the countably additive model

of at least some of our results. We conclude this topic by stating a

preliminary result of this kind.

Let (-,,K,B) be an abstract Wiener space, -y :Kt-4B, X .= C0 ([O,T],B)

and _., the Wiener measure on (XB(X)). Recalling that H= L ([0,T],K),

a representation space for (H,C,m) is given by (X,B(X),'o). Denote by

W . the coordinate map on X. Letting (2,A,7) = (2q,A, )®(X,B(X) p) and

defining all processes involved on the product space 2 in the usual

7,anner we obtain a stochastic calculus model corresponding to (15)

t
= i[h (Xu )]du + W t . (16).t . u t

- : . . .



y ^yFinally let f, Ft be the conditional measures for the optimal filter

for (16). Let eY stand for either one of thes2. Similarly let 'Y be

either one of or Y.
t )rFt

Theorem 4.

(a) Let g cL 1(92,A,H) where g(w) =f(Xt(w)). Then, with R denoting

the lifting map we have

-. R [E (g!Q y)] = I-gF)

(b) Let f S -IR be bounded and continuous. Then

R [<f,e y >] = <f,6Y>

where <f,v> Iff(x)dv(x) for v E M(S).
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